
Source of Acquisition ~

NASA Ames Research Center

Steps Toward Optimal Competitive Scheduling

Jeremy Frank and James Crawford and Lina Khatib * and Ronen Brafman t
Computational Sciences Division

NASA Ames Research Center, MS 269-3
frank@email.arc.nasa.gov
Moffett Field, CA 94035

Introduction
This paper is concerned with the problem of allocating a unit
capacity resource to multiple users within a pre-defined time
period. The resource is indivisible, so that at most one user
can use it at each time instance. However, different users
may use it at different times. The users have independent,
se@sh preferences for when and for how long they are allo-
cated this resource. Thus, they value different resource ac-
cess durations differently, and they value different time slots
differently. We seek an optimal allocation schedule for this
resource.

This problem arises in many institutional settings where,
e.g., different departments, agencies, or personal, compete
for a single resource. We are particulary motivated by the
problem of scheduling NASA's Deep Space Satelite Net-
work (DSN) among different users within NASA. Access
to DSN is needed for transmitting data from various space
missions to Earth. Each mission has different needs for DSN
time, depending on satelite and planetary orbits. Typically,
the DSN is over-subscribed, in that not all missions will be
allocated as much time as they want. This leads to various
inefficiencies - missions spend much time and resource lob-
bying for their time, often exagerating their needs. NASA,
on the other hand, would like to make optimal use of this
resource, ensuring that the good for NASA is maximized.
This raises the thorny problem of how to measure the utility
to NASA of each allocation.

In the typical case, it is difficult for the central agency,
NASA in our case, to assess the value of each interval to
each user - this is really only known to the users who un-
derskmd their needs. Thus, our prgblem is more precisely
formulated as follows: find an allocation schedule for the
resource that maximizes the sum of users preferences, when
the preference values are private information of the users.
We bypass this problem by making the assumptions that one
can assign money to customers. This assumption is reason-
able; a committee is usually in charge of deciding the prior-
ity of each mission competing for access to the DSN within
a time period while scheduling. Instead, we can assume that
the committee assigns a budget to each mission. We then
assume that customers express preferences by attaching a

'QSS
iQSS

monetary value to each allocation of an interval, and that the
utility to NASA is linear in the sum of user values.

Given the users' valuations over different time alloca-
tions, the problem is a challenging optimization scheduling.
However, as we noted, these valuations are private informa-
tion known only to the users, and a-priori we have no reason

missions tend to exagerate these values in order to obtain
more DSN time. This problem is reminiscent of similar
competitive allocation problems. Many such problems are
solved using auction-based mechanisms. In our approach
we adopt the VCG mechanism for auction clearing and pay-
ment determination to give customers (bidders) no incentive
to lie. This paper is focusing on the scheduling optimiza-
tion aspect of our problem and, therefore, we omit further
elaboration on the game theory aspect of our solution.

In summary, our problem is to optimally schedule re-
quests over single resource that are, each, specified over
a window with flexible duration augmented by preference'
values. The problem is over-subcribed and, therefore, some
requests will be rejected. To the best of our knowledge, pref-
erence elicitation for scheduling with this wide range of fea-
tures has not been addressed in the literature.

The paper is organized as follows. In Section 2 we review
the relevant related background. In Section 3 we formally
define the OCS problem. In Section 4 we briefly discssus
a VCG-like mechanism for OCS. In Section 5 we describe
simplified classes of OCS introducing various relaxations of
requirements and their solvers. Preliminary empirical results
are presented in Section 6. We conclude in Section 7.

Background
Our problem has two central aspects represent by inducing
the agents to reveal their true preferences and then solving
the associated optimal scheduling problem. Previous work
roughly falls into these two categories. We tackle the first as-
pect by adopting the Vickery-Clarke-Groves (VCG) mech-
anism that is incentive compatible in terms of bidding true
values (expressing true preferences in our case). We choose
to focus on the second aspect in this paper.

The literature on scheduling contains vast numbers of
tractable cases for scheduling problems with one optimiza-
tion criteria. The work most reiated to our type of optimiza-
tion problem is that on STPPs. In (?) it was shown that if

io aSSiiiiie tilai iii,=y w-iii &=scribe ii iruikjuiiy - in piacfice,

the preference functions over le, - e71 are restricted to be
piecewise linear and convex, the STPP can be solved by for-
mulating an appropriate linear program (LP), rendering its
solution time polynomial. It is important to note that in an
STPP, all events must be assigned a positive time. If we view
events as task start and end times, this means that in order
to formulate a scheduling problem as an STPP, we must first
resolve all resource conflicts either by rejecting certain tasks
or by ordering tasks. Thus, in practice the input consists of
a set of ordered tasks, all of which must be allocated some
time. Cases where there are too many tasks or sets of tasks
have trivially infeasible constraints cannot be resolved by
the existing techniques.

Definition 1 An STPP consists of a set of events E , a set of
simple temporal constraints of the form a I lei - ejl 5 b
where e,, ej E E, and a set of real-valued preferencefunc-
tions on some event distances: f (lei, e3 I). One event, eo, is
designated as the origin (i.e., eo = 0), and constraints in-
volving e, and eo are interpreted as unary bounds on when
ei can occur. The problem is to find a feasible assignment to
e;(# eo) i.e., an assignment satisfying the constraints mi-
mizing x,,,,, f (lei - ej I) that also satisfies all constraints.

The Optimal Competitive Scheduling Problem
for the Deep Space Network

We begin with a resource R, a time horizon [O..h], and a set
of customers (bidders) J . Let A be a set of activities (re-
quests). Let SA be the start time, DA be the duration, and
EA be the end time of activity A E A. Associated with A
are the following constraints: SA + DA = EA, All activities
A also share a single unary resource R (i.e. jobs can’t over-
lap). We may also associate other constraints among collec-
tions of activities. The most elementary such constraints are
absolute start and end time: 0 I SA^^ 5 SA I SA,^ I h,
and 0 I eAlb 5 EA 5 eAvb 5 h. Similarly, tasks can
have minimum and maximum durations: 0 I dAlb 5 DA 5
d ~ , ~ I: h. Another simple form of constraint are Simple
Temporal Constraints (?) of the form a I TA - TB I b,
where TA E {SA; EA} and TB E {SB , EB}. which can
enforce activity orderings and activity endpoint separations.

Customers express preferences over when individual ac-
tivities take place, how much activities are separated, and
how long activities last. For example, a common preference
is that longer duration activities are better. Another com-
mon preference is for activities to start at some time t. In
the DSN setting, the first of these preferences is the most
common. Thus, customers’ preferences are functions of the
form ~A(SA, DA).

Briefly, we indicate how the problem is stated as game
theory. The auction protocol is a single sealed-bid auc-
tion; players/customers bid, winners and prices are deter-
mined, and winners determine the schedule that will be ex-
ecuted. Thus, the winning bids must collectively define fea-
sible schedules.

The Optimal Competitive Scheduling Problem (OCS) is
to maximize the sum of the value of customers’ true pref-
erences over scheduies given h e constrainis and bids by
choosing a subset of bids A’ to grant (satisfy) and choosing

the values of SA, EA, DAVA E A’ satisfying the relevant
constraints.

Problem Complexity
OCS is an extension of l / r , ; p , ; d,/ E, w,U, (3); that is,
scheduling tasks with release times, due dates, and dura-
tion constraints on a unary resource in order to minimize
the weighted penalty of missed jobs (alternatively maxi-
mize value of completed jobs) with duration-dependent val-
ues for tasks, additional opportunities for positive value
(start time preferences), and additional constraints (simple
temporal constraints on timepoints). Karp has shown that
l / r Z ; p t ; d,l E, w,U, is NP-complete; thus, OCS must be
NP-hard. (IS THIS CORRECT JEREMY?)

Tractable Cases: OCS Problem Relaxations
We showed earlier that the OCS problem is NP-hard. Thus,
in general, we would expect to use branch-and-bound search
to find an optimal allocation. In this paper, we identify and
solve tractable cases of OCS. In the future, we would expect
tn use such t.ramh!e cases to pmd~ice hounds for the general
case.

We restrict the temporal constraints to be tasks ordering
constraints (i.e., constraints on the relation between the start
times of different tasks). For simplicity, we will continue to
refer to these constraints using the same notation previously
usedfor simple temporal constraints: (a I ITA - TBI I b).
We will also impose limits on the form V A (D A) can take.
We first assume every function V A (DA is a set of k~ piece-

interval [xk-l, xk] and f;, (xk) = fk:’(xk). Furthermore
we assume each VA(DA) is convex.

wise linear functions, { f;,}, where fD, L is defined over an

Case 1: Total Ordering with No Task Rejection
\

 HIS CASE IS TOO LONG RELATIVE TO ITS IMPOR-
TANCE AND TO BE SHRUNK LATER IN SUMMARY, IT \, ’
IS: OneShotLP. Formulate the problem as an STPP and use
the STPP2LP to find a solution via LP-Solve. Simple and
fast but suitable only for FlexMinZero with Nocontainment
problems (rejection of a request is represented by granting ib
a duration of zero requests are ordered by their window start
times when mapping into STPP/LP which proved to be an
optimal ordering when no containment exists)

Given the above restricted version of OCS, suppose that
we have predetermined the relative order of all conflicting
tasks. Then, we can use the LP formulation of the STPP
to solve for the task durations. The LP contains a vari-
able representing the start, duration and end of each task
(SA, DA, EA). We also introduce a new variable VA. The
form of the LP is as follows: To build the LP formulation of
the STPP, we have:

maximize U A
subject to: forall A
S A + D A = E A
S A l b 5 S A 5 SAub’

eAl b 5 EA 5 eA,b 9

SAlb 5 O A 5 dAub’
a 5 ITA - TBI 5 b

We refer the reader to (?) for the proof that the solutions
to this LP are the optimal solutions to the STPP.

Extending the STPP The requirement that all conflicting
tasks be ordered is not particularly natural in our case. More-
over, even then, if there are too many tasks, the system of
linear constraints in the LP may be trivially infeasible. How-
ever, if it just so happens that all activities that could overlap
on the resource are ordered, and all tasks allow for the pos-
sibility of zero duration then the STPP is trivially feasible,
and “maximal” (no subset of the STPP has a better optimal
solution).

The requirement that we be able to reduce the duration of
a task to zero allows the LP algorithm to reject tasks without
conducting combinatorial search. However, we must still or-
der the tasks. We now identify a restricted set of problems
for which the best possible ordering can be found in plyno-
mial time. From the above discussion it follows that for such
problems the optimization problem is polynomial (assuming

Definition 2 Two requested tasks A , B are a containment
pair ifeither SA,^ 5 S B ~ ~ and e B l b < e A , b) or SA[^ < S B ~ ~

Theorem 1 Given an OCS problem whose preferences are
piecewise linear convexfunctions over DA, and whose met-
ric temporal constraints are trivially feasible and limited to
time windows and task ordering. Ifno pair of tasks A, B is a
containment pair, then the ordering according to SA^^ (and
eAub in the case of ties) induces an STPP whose optimal so-
lution is maximal over the STPPs induced by any other task
ordering.

Proving this theorem will be accomplished by proving
an equivalent theorem introduced after the following defi-
nitions.
Definition 3 The “natural order” of requests is the order-
ing induced by the start times of the associated visibility
windows, with ties broken by the window end times.

Definition 4 In any (grounded) schedule, a two granted re-
quests are a “mismatched pair” iff the order of their allo-
cated times differsfrom the natural order.
Definition 5 In any (grounded) schedule, a two granted re-
quests are “adjacent” $there is ED other request with allo-
cated time between theirs.
Theorem 2 I f R is a set of requested tasks with no con-
tainment pairs, R has an optimal schedule T with no mis-
matched pairs.

To prove this theorem, it is enough to prove that given
any schedule S with mismatched pairs, we can derive an
equivalent (of the same value) schedule with no mismatched
pairs. As a result, any optimal schedule can be transformed
into an optimal schedule with no mismatched pairs.

First a lemma about swapping adjacent mismatched pairs,
then an algorithm for deriving equivalent schedules with no
mismatched pairs.

V O - n A3WQt;A” ;o ~ l l m . , ’ W n
~ ~ I V - U U I L l L I V I I 1 0 U..”..VU,.

and eBlb 5 eALb).

A

Figure 1: Swapping Adjacent Mismatched Pairs in
Grounded Schedule.

Lemma 1 Let S be any (grounded) schedule for R. Let T A
and TC be any rwo requesrs, am’ L‘er A and C be intervuis
corresponding to their allocated times in S . If A and C
are adjacent and mismatched, then there is an equivalent
schedule T with A and C adjacent and not mismatched.

Proof (see illustration in figurel): Let I be the smallest
interval containing the time allocated to both A and C. I is
in the intersection of the visibility window of both requests
satisfied by A and C, therefore the time span allocated to
each of A and C may occur anywhere in I . Because A
and C are adjacent, there is no other request with allocated
time in I to interfere with repositioning A and C. Keeping
their sizes the same (which makes the resultant schedule T
equivalent to S), we may cause A and C to exchange places
within I (keeping the rest of the schedule unchanged). 0

Algorithm: Let S be any optimal schedule for R.
Let k be the number of task allocations in S. Make k - 1
traversals of the timeline, left-to-right: whenever two
adjacent allocations appear that are mismatched, swap them
as described in the lemma. After the k - 1 traversals,
there are (according the the theory of bubble sort!), no
remaining mismatched pairs. Since S was optimal, so is the
bubble-sorted resultant schedule. 0

This completes the proof for Theorem1 .

Now suppose we have a containment pair with A con-
taining B. If we assume tasks are interruptible we can
split A into A’ and A” such that the optimal ordering is
A’ < B < A” according to the previous rule. Initially,
this may not appear to be an equivallent problem since our
preference for the duration of A” depends on the duration of
A’. However, we can use the sum of their durations directly
in the objective function for the induced LP.

It is tempting to think that we can find the optimal or-
dering for a containment pair without intermptibility. Either
ordering prunes duration choices for A but neither prune du-
ration choices for B. It is trivial to determine which prunes

more duration choices for A (we can construct cases for
which either ordering prunes more choices). One might
think that the optimal ordering is that which prunes fewer
duration choices for A. Unfortunately, not only is this not
true, but we can demonstrate that containment pairs actually
break the "optimal" ordering for non-containment pairs of
tasks. The following simple example (also shown in Figure
??) shows this:
Task A: S A , , = 0 , eA,, = 5 , dAUb = 2, VA(DA) = 2 d ~
Task B: sgLb = 1, egUb = 6, dgub = 2, ~ l g (D g) = dg
Task C: scLb = 0, ecUb = 1, dc,, = 1, v c (D c) = lOdc
Task D: S D ~ , = 2, eD,, = 3, do_, = 1, W D (D D) = lOdD
Task E: S E ~ , = 5 , eEu, = 6, dEUb = 1, W E (D E) = 1OdE

The idea is that highest paying tasks (C, D,and E) should
be placed in the schedule and given their maximum duration.
This leaves 2 gaps to be filled by lower paying tasks (A and
B). The gaps are as follows: [l 21 and [3 51. If A < B, A
gets assigned [l 21 and B gets assigned [3 51. The value is
2+2=4. If B < A, B gets assigned 1 slot [l 21 and A gets

the optimal ordering for A and B, contradicting the optimal
ordering when no containment pairs are present.

..-.,. ScQigfied 2 ~ ! n t ~ [3 5j. The v a j ~ p is !+e5 Thus, _R < -4 is

Case 2: Fixed Duration with Task Rejection

Overlap Boundness implies apolynomial run time (exponen-
tial only in the 'bound').
Simple Solver For each time point on the horizon, con-
sider all possible allocations. Pruning is done similarly to
the next algorithm.
PrefixLengthBased Partition Solver Based on a concep-
tual tree. Nodes at level i represents the ith request in the
partial schedule starting from the node down the branch to
this node. At each node, the requests are split into 2 sets:
'closed' (past their last opportunity) and 'open' (still active).
For each node, the first child is the request that ends the ear-
liest among the 'open' and un-sused requests. The remain-
ing children are all 'open' and un-used requests that 'may'
start any time between the end of the node and the end of
the first child. Pruning of a partial schedule is based on the
combination of three parameters:
TimeBased Partition Solver Partition the time horizon
based on 'latest start time' of the requests. For each par-
tition (bucket), consider all possible extensions to all partial
schedules received from previous partition. Prune similarly
to 3a. Adjust the 'closed', 'active', and 'open' sets. A re-
quest is 'closed' if its past its last opportunity, 'active' if it
could start within the current partition (bucket), and 'open'
otherwise.
Notes on the three solvers for Fixed Durations The Sim-
ple and PrefixLengthBased Partion are implemented with
similar domination rules but the later seems to outperform
the former for problems that have many competing requests.
The PrefixLengthBased Partion has a wider (fatter) but shal-
lower (shorter) search tree than the.

The domination rules of the PrefixLengthBased Partition

are applied to subschedules that are of the same size in terms
of number of grants while the domination rules of the Simple
are applied to subschedules that are of the, roughly, same
extension.

The dominations rules of PrefixLengthBased could be en-
hanced by taking into consideration when the difference in
component sets has a value that doesn't exceed the differ-
ence in value of 2 subschedules, comparing a subschedule
with prefixes of other subschedules to allow for 'fair' com-
parisons in terms of extensions, and comparing a subsched-
ule with dummy zeros added, when needed before attaching
an actual grant, with one-level prefix (one resulting from ig-
noring the last grant only) of other subschedules to allow for
elimination prior to adding remaining siblings

Case 3: Flexible Duration with Task Rejection

If the flexible duration is chosen in a discrete manner, then
the solvers for fixed duration may be extended to handle all
the discrete possibilities of the flexible durations. This adds

ration. A more interesting case is when the flexible duration
is over continuous domain and, therefore, this what we will
explore next.
Dual Graph Based Solver Build the Dual graph where
the nodes are each pair of requests with overlapping win-
dows. The domain for each node is a set of 5 values indi-
cating if any of the component requests is to be granted and,
if both granted, in which order. The values selected for the
nodes under any single scenario has to be consistent. (ob-
vious?) For each scenario, which represents a selection of
subtasks to grant in some specific ordering, an LP problem
is formed and LP-Solve is called to find the optimal alloca-
tion. Filtering is done prior to forming the LP problem if
the scenario is found to be no better than the best currently
found scenario. Semi-simple and slow but suitable for least
restricted problems. Dealing with OvrlpBounded problems
implies having a bounded induced width graphs which re-
sults in complexity reduction. (how much reduction?)
Partition Based Solver Divide the time horizon into par-
titions based on 'earliest start time' of the requests. For each
partition (bucket), let 'fresh' be the set of requests that initi-
ated this partition (ones that their earliest start time is at the
start of this partition). 'closed' is the set of requests whose
latest start time precedes this prtitiofi. 'xtive' is the set of
requests that could start at this partition. For each partial
schedule from the previous partition, let 'flow' be the set of
requests in this schedule that ends beyond the start of current
partition. For each partial schedule from the previous par-
tition, for each possible selection of a subset from 'fresh',
for each possible insertion of this subset in 'flow', form an
LP problem (selected requests and ordering), include max-
imum left shift of grants in the objective function (the end
time of the last request is multiplied by epsilon, the inverse
of the minimum bid (?), and added to the objective func-
tion), extract needed information from LP solution. Prune
accordingly using the concept of Independent Prefix (more
on this soon). This solver is Complex and Slow but suit-

tc the ccmp!exity 2 k t o : c!f the discrete P.exibi!ity i!? the d??-

generateProblem(h,w,d,v,p,n)

for n tasks
Choose window size w, u.a.r. from [l..w]
Choose start time u.a.r. from [l..h - w,]
while task window contains another task window

while task window contained by another task window

Choose duration d , u.a.r. from [l.. min(d, w,)]
Choose maximum bid b, u.a.r. from [l . . ~]
Choose number of pieces of preference u.a.r. from [l..p]
for each piece of preference

Shrink window; update w,

Enlarge window; update w,

#d* is remaining duration w,, b* is remaining bid height b,
Choose piece duration d, u.a.r, from [l..d*]; update d*
Choose bid height b, u.a.r. from [l..b*]; update b*
Add preference function piece of duration d , up to bid b,

I

Empirical Results
In this section we describe some preliminary empirical re-
sults on the Case 1 simplification applied to randomly gen-
erated instances of these problems.

Random Problems
The instances are generated as follows. Let h be the schedul-
ing horizon. Let w be the maximum window for any task,
d be the maximum duration of any task, v be the maximum
bid for any task, and p be the maximum number of pieces
of the preference function, also inputs. First, the task start
time and maximum duration are selected uniformly from the
given range. These characteristics are then modified to en-
sure that no pair of tasks is a containment pair. Finally, the
maximum bid of the task is generated, a random number of
pieces of the preference function is selected, and the prefer-
ence function is generated.

Preliminary Empirical Results
We present the results of preliminary empirical tests de-
signed to show the growth in time to solve the LP as a func-
tion of the problem '. Due to the relative simpiicity of the
temporal constraints on tasks, the principal contributors to
the LP are the number of tasks and the number of pieces in
tasks' preference functions. Figure ?? shows timing results
for problems with h = 4000, w = 20, d = 15 and v = 40.
We vary the number of tasks n from 200 to 1600 by 200,
and the maximum number of pieces of the bid p from 1 to
6. Growth in problem complexity is sub-linear in p , as ex-
pected, and appears polynomial in the number of tasks. The
CPU times shown are in seconds; we average over 5 ran-
domly generated problems. Timing is only for solving the

LP, which was done by lpsolve, a public domain LP solver.
More results could be added from CASE 2

Conclusions and Future Work
We describe the OCS problem for Deep Space Network.
This problem consists of activities with time windows and
flexible durations, simple temporal constraints, and pref-
erences over a combination of start time and duration of
tasks. We have shown that a VCG mechanism exists for
this problem, which (to our knowledge) is the first mecha-
nism for an auction on a mixture of divisible and indivisible
goods. We have identified a class of OCS problems with a
tractable second-price mechanism: activities with time win-
dows, flexible duration, ordering constraints, convex, piece-
wise linear preferences, no containment pairs, and for which
duration of zero is feasible. The tractability result is a novel
extension of the theory of STPPs to tractably handle task
ordering and task rejection.

Obviously a study of the general case of OCS for the
DSN is worthwhile. Task containment, metric temporal con-
- ctraintc .. I.-_-I, rnlllti-capzcity . - 1 - - -_ res~urces and choices over resources
will generally lead to NP-hard problems. We are investi-
gating options for incorporating the solving of tractable sub-
cases in a complete solver, in a manner similar to that de-
scribed in (?). The tractable cases for STPP described in
this paper provide methods for bounding above the value of
schedules by relaxing the STPP constraints; they can then
be used both as inference mechanisms and as the bases of
heuristics. Proving the value of the bounds and subsequently
experimenting with those bounds inside a complete solver
are on our agenda.

In our formulation, we implicitly assumed that the facil-
ity owner (NASA) was the auctioneer and thus had no bid.
However, we could generally introduce new bidders to rep-
resent the facility owner's criteria on schedules. For exam-
ple, maximizing utilization could be a preference: NASA
could be given a budget for this, and express preferences
over it, thereby influencing the auction. In general, we be-
lieve the tractability results will extend to multiple prefer-
ences over a set of activities.

The tractable cases of OCS for DSN restrict the nature
of the preference functions to piecewise linear convex func-
tions of the duration, VA(DA) and forces preferences to ex-
tend to DA = 0. If more general preference functions
VA(DA, SA) are allowed, care must be taken to ensure that
rejected tasks derive no value, Gi fmnally, VA(O, SA) = 0.
Furthermore, metric temporal constraints on rejected tasks
should not be enforced. The STPP framework may not be
appropriate in this setting; we are investigating other for-
malisms in search of new tractable algorithms.

'Investigations of solution quality, task rejection and so on are
pending .

